## **Birth asphyxia:** when the pieces of the puzzle don't fit

Dr Janet Rennie

Senior Research Associate, EGA Institute of Women's Health, UCL



### Objectives

To review the criteria for establishing the probability of a damaging intrapartum hypoxic ischaemic injury with a focus on acute profound hypoxic ischaemia.

To examine the criteria individually in order to consider exceptions:

- CTG changes
- cord blood acidosis
- Apgar score and resuscitation
- encephalopathy
- imaging changes
- type of disability

#### Analysis of over 3000 litigated cases



Acute profound HI >1000 cases

775 settled; 405 for the Plaintiff

#### Smart, funny, trapped: at 21, Calandre gets her day in court



Calandre Simpson is an intelligent and perceptive young woman, trapped inside a crippled body.

At her birth 21 years ago, a court heard yesterday, she was "barely alive" when she was delivered by emergency caesarean after a doctor botched four or five attempts at using several types of forceps at St Margaret's Private Hospital, Darlinghurst.

During the delivery, which lasted about 40 minutes, Calandre's heart rate dropped from 140 to 80 beats a minute, and her brain was deprived of vital oxygen, rendering her with athetoid cerebral palsy.

Calandre, of Vaucluse, is suing the obstetrician, Dr Robert Diamond, in the NSW Supreme Court for undisclosed damages, claiming an experienced and competent doctor would have been able to deliver her properly using forceps.

### Acute profound HI – typical case

- Fetal bradycardia < 80 bpm for more than 10 minutes immediately before birth
- Birth depression and need for resuscitation
- Cord blood acidosis
- Early neonatal encephalopathy with seizures (since 2010, cooled)
- MR imaging evidence of damage to the deep grey matter
- Cerebral palsy, often with learning disability

#### International consensus statement/ACOG criteria

**Essential criteria:** 

- evidence of a metabolic acidosis (fetal, cord or very early neonatal) with pH <7.0 and base deficit >-12 mmol/l;
- early onset of encephalopathy in infants of > 34 weeks
- CP of the spastic quadriplegic or dyskinetic type
- Exclusion of other identifiable aetiologies, such as trauma, coagulation disorders, infectious conditions or genetic disorders\*.

Source: MacLennan A et al BMJ 1999 319:1054-9

\* Added by ACOG in 2003, updated 2014

### Secondary criteria

- sentinel hypoxic event occurring immediately before or during labour;
- fetal heart rate patterns consistent with an acute peripartum or intrapartum event
- sudden, rapid and sustained deterioration of CTG where the pattern was previously normal;
- Apgar <5 for >5 minutes;
- early evidence of multisystem involvement;
- early imaging evidence of an acute cerebral abnormality in a recognised pattern

### 1. Fetal bradycardia

Bradycardia – usually <80 bpm for >10 minutes

#### Very low Apgar with prior normal FH? Think of maternal heart rate, doubling.







### 2. Cord blood acidosis

#### Why is metabolic acidosis so important?





#### Aerobic metabolism

- ATP is the essential "energy currency" of all cells
- ATP is not stored
- Oxygen is required to make ATP

#### Anaerobic metabolism

 ATP is made from stored glycogen and lactic acid accumulates

## Umbilical cord gases



|                                  | Venous blood | Arterial blood |
|----------------------------------|--------------|----------------|
| рН                               | 7.25-7.45    | 7.18-7.38      |
| H <sup>+</sup> ion concentration | 56-36        | 64-43          |
| PCO <sub>2</sub> mmHg            | 26.8-49.2    | 32.3-65.8      |
| PCO <sub>2</sub> kPa             | 3.57-6.56    | 4.29-8.77      |
| PO <sub>2</sub> mmHg             | 17.2-40.8    | 5.6-30.8       |
| PO <sub>2</sub> kPa              | 2.29-5.44    | 0.75-4.1       |
| HCO <sub>3</sub> mmol/L          | 15.8-24.2    | 17-27          |
| Base deficit mmol/L              | 0 to 8       | 0 to 8         |

Data are mean ± 2 standard deviations. Lactate is < 5 mmol/L

From Pomerance JF 2012 Interpreting umbilical cord blood gases 2<sup>nd</sup> Edition: BNMG Pasadena http://www.cordgases.com

## The umbilical arterial pH is <u>always</u> lower than the venous pH





Figure 2 Change in arterial lactate concentration observed in damped and unclamped vessels. Data are mean (SEM). \*Significant difference between magnitude of change in clamped versus unclamped samples at corresponding time point (p<0.05).

no significant change in pH and blood gases in arterial blood in a clamped vessel stored at room temperature for up to one hour; but lactate increases

Armstrong, L. & Stenson, B. 2006, *Archives of Disease in Childhood*, vol. 91, no. 5, pp. 342-345 *with permission*.



Mother in 100% oxygen: Umbilical arterial PO<sub>2</sub> <40 mmHg

Adobe stock image, with subscription

Umbilical venous  $PO_2$  cannot be higher than ~90 mmHg and usually less than 50

### Paradoxical results

Umbilical arterial pH can be significantly lower than the venous pH in cord occlusion

Check all the values if available; same vessel sampled twice

Use the appropriate normal ranges (labour?)

Check for internal inconsistency, unphysiological levels (e.g high oxygen)

Was the sample correctly processed?

Look at the early neonatal values, lactate if available

Occasionally complete cord occlusion = normal results



| Blood Gas Values                       |          |         |  |
|----------------------------------------|----------|---------|--|
| рH                                     | 7.318    |         |  |
| pCO <sub>2</sub>                       | 8.32     | kPa     |  |
| $pO_2$                                 | 4.04     | kPa     |  |
| Acid Base Status                       |          |         |  |
| cHCO <sub>3</sub> -(P,st) <sub>c</sub> | 27.6     | mmol/L  |  |
| ABEc                                   | 4.4      | mmol/L  |  |
| SBEc                                   | 5.3      | mmol/L  |  |
| Oximetry Values                        |          |         |  |
| <i>c</i> tHb                           | 9.5      | g/dL    |  |
| sO2                                    | 53.5     | %       |  |
| FO <sub>2</sub> Hb                     | 52.5     | %       |  |
| FCOHb                                  | 0.6      | %       |  |
| FHHb                                   | 45.6     | %       |  |
| FMetHb                                 | 1.3      | %       |  |
| Electrolyte Values                     |          |         |  |
| cNa*                                   | 133      | mmol/L  |  |
| cK*                                    | 4.8      | mmol/L  |  |
| cCa <sup>2+</sup>                      | 1.36     | mmol/L  |  |
| ¢Cl⁻                                   | 96       | mmol/L  |  |
| Metabolite Values                      |          |         |  |
| cGlu                                   | 6.3      | mmol/L  |  |
| cLac                                   | 2.7      | mmol/L  |  |
| <i>c</i> tBil                          | 18       | µmol/l_ |  |
| Hctc                                   | 29.5     | %       |  |
| Temperature Correct                    | ted Valu | les     |  |
| рН( <i>T</i> )                         | 7.318    |         |  |
| $pCO_2(T)$                             | 8.32     | kPa     |  |
| $pO_2(T)$                              | 4.04     | kPa     |  |
| Oxygen Status                          |          |         |  |
| ctO <sub>2c</sub>                      | 7.0      | Vol%    |  |
| p50_                                   | 3.84     | kPa     |  |

#### Example

- Initial failed induction over 3 days, offered CS
- Then ROM and syntocinon
- CTG pathological, synt reduced, to theatre for trial
- Cord pH 7.37, BE -2 and 7.45 BE -2. Apgar 1,3,4



Baby pH after resuscitation 6.85, BE -20, lactate 16; HIE, cooled, MRI=BGT

### 3. Apgar scores



|   | Score               | 0            | 1                             | 2                      |
|---|---------------------|--------------|-------------------------------|------------------------|
| А | Appearance          | Pale or blue | Body pink<br>Extremities blue | pink                   |
| Ρ | Pulse rate          | absent       | <100                          | >100                   |
| G | Grimace<br>(reflex) | Nil          | Some                          | cry                    |
| А | Activity (tone)     | Limp         | Some<br>flexion               | Well flexed,<br>active |
| R | Respiration         | Absent       | Weak                          | normal                 |

The score is reasonably robust although there is interobserver variability.

Check who calculated the score, and when, and does the narrative fit?

Was the heart rate measured using a stethoscope on the chest?

Was there a need for suction of meconium, etc?

### Apgar scores should not go down

| Time | comment                                                                                                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 0630 | Decelerations on CTG                                                                                                           |
| 0635 | Birth. Apgar 5/6; blue, heart rate <60, grimacing<br>and trying to cry; tone normal (score 2)<br>Cord pH 7.36 base deficit 3.3 |
| 0640 | Apgar score 1, B&M, chest compressions                                                                                         |
| 0645 | Heart rate 40                                                                                                                  |
| 0655 | Response after 4 doses of adrenaline                                                                                           |

Dispute about the arrival time of the registrar, and the drug timings

In 851/1018 APA cases 1 min Apgar  $\leq$ 3; ~30 SUPC - 85% approx

#### Gasps/min 60 -Primary Last gasp Onset of apnoea gasping 40 Secondary or terminal apnoea 20 0 0 5 10 15 20

#### **Terminal apnoea**

#### V

#### Primary apnoea ?



Fig 2 modified from Dawes et al J Physiol, as in Rennie Textbook of Neonatology 5<sup>th</sup> edition

### 4. Encephalopathy

- Seizures are the hallmark of encephalopathy, but mild encephalopathy can be present without seizure
- Frequent structured clinical examinations help to document the course and severity of encephalopathy
- In hypoxic ischaemic encephalopathy the condition evolves; seizures emerge after 12h, the baby's neurological state deteriorates and then improves
- Not all encephalopathy is HIE

### Recognition of encephalopathy

- Changed sleep-wake cycling
- Altered level of consciousness
- Lowered reactivity
- Altered muscle tone
- Altered reflexes
- seizures



|           | S |
|-----------|---|
|           | а |
|           | а |
| Modified  | а |
| widdiffed | p |
| Sarnat    |   |
| Jannal    | t |
| score     |   |
|           |   |

| `             |                          |                          |                               |
|---------------|--------------------------|--------------------------|-------------------------------|
| Domain        | Stage1                   | Stage2                   | Stage3                        |
| Seizures      | None                     | Common focal or          | Uncommon (excluding           |
|               |                          | multifocal seizures      | decerebration)                |
|               |                          |                          | Or frequent seizures          |
| Level of      | Normal                   | Lethargic                | Stuperose/ comatose           |
| consciousness | hyper alert              | Decreased activity in an | Not able to rouse and         |
|               |                          | infant who is aroused    | unresponsive to external      |
|               |                          | and responsive           | stimuli                       |
|               |                          | Can be irritable to      |                               |
|               |                          | external stimuli         |                               |
| Spontaneous   | Active                   | Less than active         | No activity whatsoever        |
| activity when | Vigorous does not stay   | Not vigorous             |                               |
| awake or      | in one position          |                          |                               |
| aroused       |                          |                          |                               |
| posture       | Moving around and        | Distal flexion, complete | Decerebrate with or           |
|               | does not maintain only   | extension or frog –      | without stimulation (all      |
|               | one position             | legged position          | extremities extended)         |
| tone          | Normal – resists passive | Hypotonic or floppy,     | Completely flaccid like a     |
|               | motion                   | either focal or general  | rag doll                      |
|               | Hypertonic, jittery      |                          |                               |
| Primitive     | Suck: vigorously sucks   | Suck: weak               | suck: completely absent       |
| reflexes      | finger or ET tube        |                          | Moro: completely absent       |
|               | Moro – Normal            | Moro: incomplete         |                               |
|               | extension of limbs       |                          |                               |
|               | followed by flexion      |                          |                               |
| Autonomic     | Pupil – normal size      | Pupils – constricted     | Pupils: fixed dilated, skew   |
| system        | Reactive to light        | <3mm but react to light  | gaze not reactive to light    |
|               | Heart rate normal >100   | Heart rate: bradycardia  | Heart rate: variable          |
|               | Respirations - normal    | (<100 variable up to     | inconsistent rate, irregular, |
|               |                          | 120)                     | may be bradycardic            |
|               |                          | Respirations: periodic   | Respirations: completely      |
|               |                          | irregular breathing      | apnoeic requiring positive    |
|               |                          | effort                   | pressure ventilation          |
| •             |                          | -                        |                               |

Training in neurological examination

http://hopefn3.org/members/

## HIE – EEG Evolution......3 hours after delivery



# HIE – EEG Evolution....12 hours - seizures



#### Thompson score – evolution and outcome

| Sign             | Score 0 | 1                 | 2                 | 3               |
|------------------|---------|-------------------|-------------------|-----------------|
| Tone             | Normal  | Hyper             | hypo              | flaccid         |
| conciousne<br>ss | Normal  | Hyperalert        | Lethargic         | comatose        |
| Fits             | None    | < 3 per day       | >2 per day        |                 |
| Posture          | Normal  | Fisting           | Distal<br>flexion | decerebrat<br>e |
| Moro             | Normal  | Partial           | absent            |                 |
| Grasp            | Normal  | Poor              | absent            |                 |
| Suck             | Normal  | Poor              | Absent            |                 |
| respiration      | Normal  | Hypervent         | Brief<br>apnoea   | IPPV            |
| Fontanelle       | Normal  | Full not<br>tense | tense             |                 |

Modified from Thompson et al Acta Paed Scand 1997;86:757-761

#### **Atypical course - Cerebral malformation**



Term baby; maternal swine flu at 4-6 weeks, polyhydramios, reduced FM

CTG Late decelerations, meconium liquor + maternal GBS; floppy at birth, cord pH 6.8, Apgar 2<sup>1</sup> 5<sup>5</sup> 5<sup>10</sup>

Transferred for cooling; cranial US no oedema, EEG deteriorating, poor RE

Further neurometabolic & imaging investigations performed

Muscle biopsy - low levels mitochondrial NADH ubiquinone reductase and cytochrome oxidase – probable pontocerebellar hypoplasia type 6

#### Outcome by grade of encephalopathy



personal communication

<sup>26</sup> from Prof Deirdre Murray – see Early EEG grade and outcome Pediatrics 2016:138 (4) e 201659

## Cooling -the biggest single neonatal therapeutic advance in over 50 years



#### British Association for Perinatal Medicine:

Therapeutic Hypothermia for neonatal encephalopathy -A framework for practice 2020 A. Infants  $\geq$ 36 completed weeks gestation admitted to the NICU with at least one of the following:

- $\cdot$  Apgar score of  $\underline{<}5$  at 10 minutes after birth
- Continued need for resuscitation, including endotracheal or mask ventilation, at 10 minutes after birth (see notes below)
- $\cdot$  Acidosis defined as any occurrence of:
  - pH <u><</u>7.00
- Base deficit <u>>16mmol/l</u> in any cord or baby gas sample within 60 minutes of birth

for whether they meet the neurological abnormality entry criteria (B) by trained personnel: **B.** Moderate to severe encephalopathy, consisting of altered state of

consciousness (lethargy, stupor or coma)

Infants that meet criterion A will be assessed

#### AND at least one of the

following:

- hypotonia
- abnormal reflexes including oculomotor or pupillary abnormalities
- pupiliary aprioritiancies
- absent or weak suck
- $\cdot$  clinical seizures

Infants that meet criteria A & B will be assessed by aEEG (read by trained personnel):

**C.** At least 30 minutes duration of amplitude integrated EEG recording that shows abnormal background aEEG activity or seizures. (see notes below) There must be one of the following:

- · normal background with some seizure activity
- $\cdot$  moderately abnormal activity
- $\cdot$  suppressed activity
- continuous seizure activity

# Seizures reduced in cooled babies



### 5. Imaging



DWI - Water sensitive sequences, peak at 3-5 days

"pseudonormalise" after 7-10 days

#### More normal MRIs after cooling, but function not always normal

62 cooled babies with MRI 2005-2011

35/62 had normal MRI

Of these 35, 26 had normal development (74%)

7 moderate delay (20%) – mainly cognitive

2 severe delay (6%)

Rollins et al Ped Neurol 2014 50(5) p 447-451

### 6. Type of disability

- Dyskinetic tetraplegic CP with or without learning difficulties
- Learning difficulties without cerebral palsy
- Memory problems ("developmental amnesia")
- Executive function problems
- Social communication disorders, with and without learning difficulty

#### Dyskinetic tetraplegic cerebral palsy

Uncontrolled movements

Varying muscle tone

Difficulty swallowing and speaking (bulbar palsy)



### Learning difficulties with no CP

|               | Cooled<br>(163) | Not cooled (162) | P value |
|---------------|-----------------|------------------|---------|
| Dead          | 47 (29%)        | 49 (30%)         | 0.81    |
| No disability | 65/96 (68%)     | 37/45 (45%)      | 0.002   |
| СР            | 21/98 (21%)     | 31/86 (36%)      | 0.03    |

Among those who could be tested, there was no significant difference with respect to IQ scores on a continuous scale, or scores of working memory. There were differences in the score of attention/executive function.

The US data are similar, with attention-executive function problems in 4% of cooled survivors compared to 13% of non-cooled (p=0.19).

#### Atypical outcomes; example

2<sup>nd</sup> twin; cord prolapse; em CS Apgar score 1 and 4 early neonatal pH 6.98 Seizures, not cooled (old case) No physical disability at all MRI – hippocampal damage Borderline IQ , memory and executive function problems

De Haan et al Human memory development and its dysfunction after early hippocampal injury Trends in Neuroscience 2006;29:374-381

Kasdorf et al Pediatric Neurology 2014;51:104-8

Grossman et al Archives Disease in Childhood fetal and neonatal edition 2023;108:F295-F301





#### Atypical outcomes; example

Cord prolapse at time of forceps – em CS Apgar scores 3,5 but score 2 for HR Cord pH 6.89, 7.11 Not cooled – crying with normal tone No encephalopathy normal MRI Social communication disorder. Boy. Family history of ASD

Modabbernia 2017 Environmental risk factors for autism: an evidence based review Mol Autism 8:13

Gardener 2011 Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis Pediatrics 128:344-355

#### Conclusion



The spectrum of outcomes which are recognised to occur after perinatal hypoxic ischaemia has widened considerably, particularly since the introduction of therapeutic hypothermia.

Damaging acute profound HI in the immediate run-up to delivery is associated with birth depression, metabolic acidosis and an evolving encephalopathy.

The fewer the pieces fit into the jigsaw, the less likely that causation will be established - I have not addressed timing.

### Thank you

